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Predicting Future Technologies

• “Nothing is less predictable than the 
development of an active scientific field.”

- Charles Francis Richter (1980)

• “Trying to predict the future is like trying to 
drive down a country road at night with no lights 
while looking out the back window.”

- Peter Drucker
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Case 1: Quantum Mechanics of Atoms 
(1937)

The first method for accurately measuring 
hyperfine frequencies by molecular beam 
resonance was developed by I.I. Rabi and his 
associates in 1937 at Columbia University

133Cs

Isidor Isaac Rabi 

Phys. Rev. 55, 1176 - 1181 (1939)
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Hyperfine structure of Cesium-133

• 9.192 631 770 GHz (Cs-133 Hyperfine Beat)

Hewlett-Packard 5062C Cesium Beam Frequency 
Reference Training Manual, November 1974 

Precision of ~ 1 part in 1012!
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Enabling Technology - GPS!

• 20,000 km - 300,000 km per 
second

• Four satellites required to 
pinpoint 3-D location

• Each of the 24 GPS satellites 
holds four atomic clocks, 
which every day get an 
accurate time transfusion from 
the Air Force, which "borrows" 
time from the United States 
Naval Observatory. 

• Requires 1 part in 1012 

temporal precision in order to 
predict position within 1 meter

(I. I. Rabi won the Nobel Prize in Physics 1944
N.F. Ramsey won the Nobel Prize in Physics 1989)



6Approved for Public Release; Distribution Unlimited.  ABW/PA 03-10-08-127

Case 2: Quantum Mechanics of Molecules 
(1953)

Charles Townes 
A. Einstein - 1917

- Research stimulated by DoD’s
attempts at 1 ¼ cm RADAR
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The Ammonia MASER

Description: L-R: C.H. Townes, J. P. Gordon, and T. C. Wang. Wang 
stands next to the first ammonia-beam maser. The second ammonia-
beam maser is in front center with side removed so that internal
structure can be seen. Columbia University. 

Gordon, Zeiger, and Townes, Nature 318 162 (1985)
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Extend MASER technique to IR and Visible

• Schawlow (Bell Labs) and Townes 
(consulting with Bell) realized that 
extending infrared or visible would be 
an even more powerful tool for 
spectroscopy. 

• In 1957-58 they worked out the details 
on extending the MASER to the visible 
and applied for a patent. They were 
awarded a patent in 1960 and that 
same year Theodore Maiman (Hughes 
Aircraft Company) built a pulsed Ruby 
Laser.

Charlie Townes – Nobel Prize in Physics – 1964 (Maser/laser amplifier)
Arthur Schawlow – Nobel Prize in Physics – 1981 (develop. of laser)
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Military Applications of Lasers

• Laser guided munitions 
• Laser machining
• Laser sights
• Airborne laser
• Laser ranging
• …
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Case 3: Unidentified Spectra in Interstellar 
Clouds

Diffuse Interstellar Bands

Unidentified Infrared Bands

Robert Curl

Richard Smalley Harry Kroto

Proposed that carbon clusters were a 
source of interstellar spectral features

Carbon Cluster Apparatus
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C60: Buckminsterfullerene

Kroto, et al. Nature 318 162-163 (1985)
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(Near-Future) Applications of Carbon 
Nanotubes

• Fuel storage (H2, CH4, etc…)
• Structural composite materials
• Ultra-high conductivity electronics
• Ultra efficient field induced 

electron emitters
• Conductive plastics
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More Serendipitous Discoveries…

Chemistry
– Polyethylene by Hans von Pechmann, who prepared it by accident in 1898 while heating diazomethane
– Teflon, by Roy J. Plunkett, who was trying to develop a new gas for refrigeration and got a slick substance 

instead, which was used first for lubrication of machine parts 
– Cyanoacrilate glue(a.k.a. Superglue) was accidentally twice discovered by Dr. Harry Coover, first when he 

was developing a clear plastic for gunsights and later, when he was trying to develop a heat-resistant 
polymer for jet canopies. 

– Aspartame (a.k.a. NutraSweet) was also accidentally ingested by G.D. Searle chemist James Schlatter, 
who was trying to develop a test for an anti-ulcer drug.

Physics
– Radioactivity, by Henri Becquerel. While trying to investigate phosphorescent materials using 

photographic plates, he stumbled upon uranium.
– X rays, by Wilhelm Roentgen. Interested in investigating cathodic ray tubes, he noted that some 

fluorescent papers in his lab were illuminated at a distance
– Electromagnetism, by Hans Christian Oersted. While he was setting up his materials for a lecture, he 

noticed a compass needle deflecting from magnetic north when the electric current from the battery he was 
using was switched on and off. 

– The thermoelectric effect was discovered accidentally by Estonian physicist Thomas Seebeck, in 1821, 
who found that a voltage developed between the two ends of a metal bar when it was submitted to a 
difference of temperature. 

Technology
– Discovery of the principle behind inkjet printers by a Canon engineer. After putting his hot soldering iron 

by accident on his pen, ink was ejected from the pen's point a few moments later. 
– The microwave oven was invented by Percy Spencer while testing a magnetron for radar sets at 

Raytheon, he noticed that a peanut candy bar in his pocket had melted when exposed to radar waves. 
– Post-it Notes by Spencer Silver and Arthur Fry. They tried to develop a new glue at 3M, but it would not 

dry. So they devised a new use for it. 
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Air Force Research Laboratory 

• Eglin AFB / Munitions Directorate/ Energetic Materials Branch
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AFRL/RWMER – LASEM Lab

Laboratory for Applied Spectroscopy of Energetic Materials

• PI’s (Physical Chemists)
• NRC Post docs

(Materials and Physical 
chemists)

• Millitary Officers (A-Chemist, 
P-Chemist and a Physicist)

• Technicians
• (3-4 Open Postdoc Positions)

New Basic and Applied 
Research Team at Eglin 
AFB (~ 4 years old)

Team Members (but 
expanding)
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AFRL/RWMER – LASEM Lab

Laboratory for Applied Spectroscopy of Energetic Materials

Research Areas
• Explosives

• Reactive composite materials

• Thermite and inter-metallic 
materials

• Energetic thin films

• Cryogenic matrices

• Energetic core-shell nanoparticles

• Positron/plasma/positronium storage

Diagnostics
• Vis, FIR, MIR, NIR spectroscopy

• γ-ray spectroscopy

• Positron spectroscopy

• Matrix isolation spectroscopy

• TOF/QMS – mass spectrometry

• XRF/XRD

• SEM, optical microscopy

• Radiographic imaging
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Cryogenic Matrices – Basic Research 
Interests

• Ultra-low temperature chemistry – synthesize systems 
under different conditions than ambient

• Energy dissipation – stabilize pre-reactive systems
• Quantum Condensed Phases – unusual properties

– Powerful annealing behavior
– Unprecidentedly sharp transitions
– Superfluidity

liquid helium, solid parahydrogen

• New regime for exploration – many surprises
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Introduction - Antimatter Giggle Factor

Skepticism of near-term practical energy storage is justified.

One vision of 
bulk antimatter 
storage in the 
23rd century.

Star Trek 
Episode # 47 
“Obsession”
(Paramount, 

1967).
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Introduction - Reality Check

e+ = positron; Ps = positronium (e+/e- bound pair); 
PEC = Positron Energy Conversion Project; BEC = Bose-Einstein Condensation

Brillouin (B ~ 1 T) and 
Space Charge (V ~ 100 kV)  →

limits on 
bare e+ storage in ~ 1 m 3

far-term
(breakthrough

physics
required)

mid-term
(10-15 years)

near-term

Surko, UCSD

Annihilation energy:
E = 2 Ne+ mec2

Ne
+

1024

1021

1018

1015

1012

109

E

160 GJ

160 MJ

160 kJ

160 J

160 mJ

160 μJ

tabletop γ- laser

Ps BEC demo

Ps2 formation demo

state of the art

Mills, UCR !
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Introduction - Positron Moderation

fast e+
slow e+

l ~ 10 μm
t ~ 10-12 s

L~1μm
t~10-9 s

energy lost to:  |-----electronic excitations-----|-phonons-|

solid Ne                          solid pH2

rxtal ~ 100 nm                   rxtal ~ 100 μm

[E.M. Gullikson and A.P. Mills, Jr., 
Phys. Rev. Lett. 57, 376 (1986)]

Generic positron production scheme:
(1) nascent fast e+ (E ~ 100 keV)
(2) moderation (E ~ 1 eV)
(3) e+ and/or Ps trapping

Solid Ne is best known moderator
ε ≈ 0.5 %; so 99.5 % are wasted 

Slow e+ scatter, trap, and annihilate at 
defects ⇒ lost to moderation process

High quality parahydrogen (pH2) solids 
should permit slow positrons to emerge 
from deeper within moderator

Moderation efficiency increases as L / l
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• Reactions occur in a dissipative environment

• Steric effects

• Large “reaction” cross-sections

Ultra-low Temperature Chemistry
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About solid parahydrogen

Solid parahydrogen features:
• Weak intermolecular interactions
• Slow relaxation timescales
• Quantum crystal: self-annealing via tunneling
• Homogeneous environment
• Large intermolecular distance, 3.78 Å

Parahydrogen as a matrix:
• Very small matrix shifts, predictable ( -0.5 %)
• Nearly free rotation for small molecules
• High impurity mobility
• Narrow spectral linewidths (<100 MHz possible)
• Dopants induce infrared activity in matrix 
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A

B

A

A

A

B

A
B

A

A

B

B

A A
B
C
A
B
C
A
B
C

Close packing crystal structure

h.c.p f.c.c

Adapted from P. C. Souers, Hydrogen Properties for Fusion Energy, (1986)

• Symmetry: h.c.p. – D3h ; f.c.c. – Oh

• Reduced symmetry in h.c.p.
provides directionality to the 
crystal and thus enables 
polarization sensitive 
measurements to be performed.

• Relative stability of f.c.c. and h.c.p.
structures depends on many-body 
long-range interactions.

• Most stable structure in rare gas 
solids (RGS) is f.c.c. *

* Excluding solid helium
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f.c.c versus h.c.p.

• Unlike RGS, solid parahydrogen
(J=0) has h.c.p. as the lowest 
energy crystal structure.

• h.c.p more stable than f.c.c. by  
~1 mK per molecule.

• Solid parahydrogen synthesized 
by rapid vapor deposition at low 
temperature produces a mixture 
of f.c.c. and h.c.p. phases. Nearly 
exclusive h.c.p. structure 
produced upon annealing above ~ 
4.5 K.

P. C. Souers, Hydrogen Properties for Fusion Energy, (1986).
J. Van Kranendonk, Solid Hydrogen, (1983).

all h.c.p.
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Rapid Vapor Deposition

• Original machine built 
at Edwards AFB in 
1995.

• Optical path normal to 
substrate.

• Rotating molecules: 
Δm = 0 transitions 
suppressed relative to 
Δm = ±1

M.E. Fajardo and S. Tam, J. Chem. Phys. 108, 4237 (1998).
S. Tam and M.E. Fajardo, Rev. Sci. Instrum. 70, 1926 (1999).

1st Generation RVD machine
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Eglin AFB Rapid Vapor Deposition 
Instrument

• Reflection based set-up 
(FTIR).

• [o-H2] < 100 ppm.

• p-H2 deposition rate 
~150 mmol/hr 2-3 
mm/hr thickness.

• Deposition at 2.3 K. 
Sample annealed at 4.3 K 
for 15-30 min.

2nd Generation RVD machine
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Optical Geometry: Reflection Versus 
Transmission

8 ppm CO in p-H2P (1), split by crystal field

Significant change in 
the intensity of ⊥ and 
|| transitions.

Reflection data shifted 
by -0.25 cm-1 for clarity
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Polarization Spectroscopy

s

p

HCP c-axis ??

p-H2

gold substrate

Polarization analysis provides:
• An assignment of the perpendicular 

and parallel components to the crystal 
field perturbed rotational structure (i.e.
Δ m)

• Abss-pol – Absp-pol = ½ μ2
_|_  - ½ μ2

||

8 ppm CO in p-H2
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Polarization Spectroscopy

s

p

HCP c-axis ??

p-H2

gold substrate

Polarization analysis provides:
• An assignment of the perpendicular 

and parallel components to the crystal 
field perturbed rotational structure (i.e.
Δ m)

• Abss-pol – Absp-pol = ½ μ2
_|_  - ½ μ2

||

||
Δm = 0

Δm = ± 1

8 ppm CO in p-H2
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Rotation of “Large” Molecules 
in Solid Parahydrogen
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Rotation in the Solid Matrices

• Rare gas matrices and traditional molecular matrices:
– Small hydrides: HX, H2O, NH2, NH3, CH3, CH4

– Perhaps ClF, CN   (ESR and IR spectra conflict) 

• Solid parahydrogen:
– Very low angular anisotropy, and weak intermolecular interactions
– Small hydrides: HX, H2O, NH3, CH3, CH4

– “Large” molecules: N2, O2, CO, NO, HCN, … more?

Narrow spectral lines widths and the ability to examine the rotation of 
larger molecules allows us to examine the impurity-matrix 

interactions with remarkable clarity
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CO and HCN in parahydrogen

∗ o-H2 clustering

8 ppm CO in p-H2

||

P(1)

R(0)

S(0)

R(1)

∗

Gas Phase

R(0)

R(1)P(1)

Simulation:
Linear molecule in h.c.p crystal field

Simulation uses theory of: Devonshire, Proc. Roy. Soc. London A 153, 601 (1936); 
Bowers and Flygare, J. Chem. Phys., 44, 1389 (1966).
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CO and HCN in parahydrogen

∗ o-H2 clustering

8 ppm HCN in p-H2

||

P(1)

R(0)

S(0)P(2)

R(1)

∗

∗ ∗

8 ppm CO in p-H2

||

P(1)

R(0)

S(0)

R(1)

∗
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Interpretation of the Rotational Fine 
Structure- HCN

v1= 1

1,1
1,0

2,0
2,1

2,2

J, M

0,00

1

2

1,1
1,0

2,0
2,1
2,2

0,0 0

1

2

J

J

J, M

v1= 0

Free HCN (Gas)
HCN in p-H2

Energy Level Diagram (cm-1)

v0, pH2=3302.989 cm-1

v0, gas=3311.468 cm-1

0.000

8.869

2.956 v0 + 0.000

v0 + 2.936

v0 + 8.807

v0 + 0.000

0.000

2.225
2.707

6.223
(calc)

6.427

7.116

2.720

v0 + 6.070
(calc)

6.291

7.014

v0 + 2.116

Devonshire, Proc. Roy. Soc. London A 153, 601 (1936); Bowers and Flygare, J. Chem. Phys., 44, 1389 (1966).

Crystal field theory (linear molecule in HCP lattice) *

H=Hr,v + Vcry

Vcry = ε2C2,0(ΩHCN) + ε3[C3,-3(ΩHCN)-C3,3(ΩHCN)]

where Cl,m(Ω)=

“Fitting” Results in cm-1: (10 levels, 9 parameters)

NOTE: Above perturbation does not converge for large D! 
Treatment was modified to incorporate centrifugal distortion 
after crystal field calculation to avoid this problem. 

)(
12

4
,

2
1

Ω⎟
⎠
⎞

⎜
⎝
⎛

+ mlY
l
π

p -H2 Gas
B 1.475(5) 1.478

Δ B -0.005(5) -0.010
D 0.0675(5) 2.910×10-6

Δ D 0.0032(5) 0.025×10-6

v 0 3302.989(5) 3311.4770
ε2 -1.274(5) -

Δε2 -0.193(5) -
ε3 6.850(5) -

Δε3 0.767(5) -

Identical!

× 20,000!

very large!
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Prediction of Crystal Field Parameters: 
Truncation

* SAPT/MC+BS, P. Jankowski and K. Szalwicz, J. Chem. Phys. 108, 3554 (1998).

C
-a

xi
s

θ (in-plane)

χ (out-of plane)

Rotational PES for CO 
in h.c.p H2 lattice (Rigid)

+

H2-CO pair potential *

C≡O

H2 – h.c.p. lattice

Å
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Prediction of Crystal Field Parameters: 
Truncation

Rotational PES for CO CFT –up to C12,12(Ω) 

Vcry = ε2C2,0(Ω) + ε3[C3,-3(Ω)-C3,3(Ω)]
ε  (cm-1) Term ε (cm-1) Term

1.39 C 3,3(Ω ) 0.07 C 9,3(Ω )
1.23 C 5,3(Ω ) 0.04 C 12,6(Ω )
0.74 C 4,0(Ω ) 0.04 C 8,0(Ω )
-0.57 C 6,6(Ω ) 0.03 C 12,12(Ω )
-0.43 C 6,0(Ω ) 0.03 C 12,0(Ω )
0.35 C 7,3(Ω ) -0.03 C 11,3(Ω )
0.13 C 8,6(Ω ) -0.03 C 2,0(Ω )

(2.52)*

(1.03)*
* Experimentally fitted values.
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Estimation of Crystal Field Parameters: 
Simulated Spectrum for CO

• Underestimates crystal 
field splittings.

• S(0) transition too weak.

• Mixing underestimated
• First order perturbation 

insufficient?
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||

P(3/2)

R(1/2)

R(3/2)∗∗∗

∗ Atmospheric H2O

Q(1/2)

NO in Solid Parahydrogen

6 ppm NO in p -H2

v1= 1

J, M

3/2, ±3/2

1/2

J

J

J, M

v1= 0

Free NO (Gas)
NO in p-H2

NO Energy Level Diagram (cm-1)

3/2

1/2

3/2

3/2, ±3/2
3/2, ±1/2

3/2, ±3/2

3/2, ±3/2

3/2, ±1/2

v0, pH2=1873.546 cm-1

v0, gas=1876.064 cm-1

v0 + 0.00v0 + 0.00

v0 + 4.97

v0 + 3.31

4.51

4. 87

0.000.00

5.02

3.33

4.54

4.95
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Rotors Within Parahydrogen

Data from the groups of M. E. Fajardo, Y.-P. Lee, and T. Momose (1995-2006).

Rotating Dopants

• CO

…
• N2

• NO

• CH4• HCl

• NH3• H2O

?
Non-rotating dopants
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Rotors Within Parahydrogen

Non-rotating dopants

Rotating Dopants

• CO

…
• N2

• NO

• CH4• HCl

• NH3• H2O
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Preliminary C2H2 in parahydrogen

Y.P. Lee and collaborators Chem. Phys. Lett. 435 247-251 (2007) – no rotation at ‘high’ [o-H2]

0.742.47 cm-10.723.39 cm-1DCCD

0.822.74 cm-10.843.97 cm-1DCCH

13.35 cm-11.004.71 cm-1HCCH

RelativeWavenumberRelativeWavenumer

pH2Gas

ER(0) - EP(1) (4B)

DCCD

• Acetylene IR spectrum ‘ages’…
timescale of 30 minutes. Aging 
appears to be acetylene-acetylene 
clustering.

• “Rotational spectrum” disappears 
fairly quickly (but not with 
annealing!)
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Dopant Cluster Formation 
in Solid Parahydrogen



43Approved for Public Release; Distribution Unlimited.  ABW/PA 03-10-08-127

o -H2 – HCN Clustering

8 ppm HCN in p-H2

||

P(1)

R(0)

S(0)P(2)

R(1)

∗

∗ ∗

Orthohydrogen Dependence

[o-H2]



44Approved for Public Release; Distribution Unlimited.  ABW/PA 03-10-08-127

o -H2 – HCN Clustering

HCN - (o-H2)n

1
1

1

1

22

22

2

0
2 20

2 22

Out-of-planeIn-plane

* Moore, Ishiguro, and Miller, JCP 115, 5144 (2001)

HCN-oH2

oH2 - HCN

*Two binding sites predicted 

||

×5
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HCl dimer

wavenumber (cm-1)

2832 2833 2834 2835 2836 2837

lo
g 1

0(
I 0/

I) 
(a

bs
.)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

35
37

35
37

35
37

35
37

35
35

35
35

37
37

37
37

(a)

(b)

⊥

|| ||
||

||

⊥
⊥

⊥∗∗∗ ∗

See Mario Fajardo’s Poster for more details

* ⇒ o-H2 - HCl complex
⊥ ⇒ in-plane (HCl)2
|| ⇒ out-of-plane (HCl)2
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HCN Clustering in p-H2(s) – linear 
assembly in the solid state?

Preliminary data… work in progress

HCN-HCN

HCN-HCN-HCN

HCN-HCN-HCN-HCN
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Crystallite Orientation and the
Annealing Behavior of 

Doped Solid Parahydrogen



48Approved for Public Release; Distribution Unlimited.  ABW/PA 03-10-08-127

Orientation of Crystal Axis

• Lab frame versus crystal frame
of reference.

• ‘s ’ – ‘p ’ polarization
provides moment relative
to surface normal.

• Spectral fine structure
sensitive to the
local crystallite orientation.

Correlation between crystal 
axis and surface normal?

Polarization analysis provides:
• An assignment of the perpendicular 

and parallel components to the crystal 
field perturbed rotational structure (i.e.
Δ m)

• Abss-pol – Absp-pol = ½ μ2
_|_  - ½ μ2

||

s

p

HCP c-axis ??

p-H2

gold substrate
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As Deposited Versus Annealed

Annealed, 8 ppm HCN in p-H2 @ 2.3 K

~100 % ‘polarized’

- Before annealing, less than 5% of the HCP features are oriented normal to the substrate.
- After annealing, ~90% of the HCP features are oriented normal to substrate!!

Upon deposition, HCP lattices randomly oriented, but upon annealing gain a macroscopic orientation to the laboratory frame.

As-deposited, 8 ppm HCN in p-H2 @ 2.3 K

<5 % ‘polarized’
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Multiple samples – HCN, CO, NO

- All exhibit virtually no 
alignment in as deposited 
samples

- All exhibit more than 
90% alignment of crystal 
axis after annealing.

8 ppm HCN in parahydrogen
As deposited Annealed

105 ±18 %
polarized

< 5 %
polarized

8 ppm NO in parahydrogen
As deposited Annealed

93 ± 35 %
polarized

<10 %
polarized

8 ppm CO in parahydrogen
As deposited Annealed

92 ± 17 %
polarized

<20 %
polarized
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CH4 in parahydrogen

82 ± 17 %
Orientation

< 5 %
Orientation

• Essentially no orientation in as deposited.
• Degree of polarization in annealed samples fluctuates for CH4 from sample to sample.
• Dopant helps establish macroscopic orientation?

Sample 1 Sample 2 Sample 3

~10%
polarized

69 ± 10%
polarized

~5 %
polarized

82 ± 14%
polarized

<5 %
polarized

106 ± 25%
polarized
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Mixed CH4 and HCN (3.5 ppm/3.8 ppm)

• % orientation agrees in mixed samples
• HCN more influential than CH4?

CH4 ν4 Region HCN ν1 Region

<5%
polarized

108 ± 30%
polarized

<5 %
polarized

102 ± 12%
polarized
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Conclusions

• Solid parahydrogen produced by Rapid Vapor Deposition is amenable to 
Polarization Spectroscopy:
– Facilitates the assignment of the crystal field fine structure in the 

spectra of rotating dopants.   
– Sheds light on cluster formation in doped parahydrogen samples.
– Provides new insight into the annealing behavior of the solid 

parahydrogen produced by RVD.
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Basic Research in Military

… It’s alive and active
– Great job opportunities for recent grads

– Good, fundamental research efforts underway

– Opportunities for academia to help! The real 
challenge is in “selling” your work and providing a 
valid, realistic path towards an application… (more 
than just lip service is required)
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A few final thoughts…

“In this Worldwide economy our ability to create wealth is not/no
longer bounded by physical limits/natural resources but by our ability 
to come up with KEY “new ideas”/Inventions. The More Education, 

the more Ideas and the More WEALTH, Education is THE KEY”
- Dennis Bushnell (2002)

Chief Scientist, NASA Langley

“ Scientists do a great job with the details of the science. 
Scientists must learn the art of the sound bite!”

- Bill Nye (the science guy)
Interview with C&E News, 2006

“The best way to predict the future is to invent it.”
- Alan Kay
Computer Scientist, 1991)



QUESTIONS?QUESTIONS?
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Back-up Slides
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Spectral Assignments Tools

Temperature Dependence Orthohydrogen Dependence

Combination Differences

Spectrum was interpreted by its:
- Temperature dependence

- Orthohydrogen concentration dependence

- Transition frequency combination 
differences

- Polarization dependence!

Te
m

pe
ra

tu
re

[o
-H

2]
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||

P(3/2)

R(1/2)

R(3/2)∗∗∗

∗ Atmospheric H2O

Q(1/2)

NO in solid parahydrogen

6 ppm NO in p -H2

wavenumber (cm -1 )
860 1865 1870 1875 1880 1885 1890
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